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Abstract— We introduce the KAIST multi-spectral data set,
which covers a great range of drivable regions, from urban
to residential, for autonomous systems. Our data set provides
the different perspectives of the world captured in coarse time
slots (day and night), in addition to fine time slots (sunrise,
morning, afternoon, sunset, night, and dawn). For all-day per-
ception of autonomous systems, we propose the use of a different
spectral sensor, i.e., a thermal imaging camera. Toward this
goal, we develop a multi-sensor platform, which supports the
use of a co-aligned RGB/Thermal camera, RGB stereo, 3-D
LiDAR, and inertial sensors (GPS/IMU) and a related calibration
technique. We design a wide range of visual perception tasks
including the object detection, drivable region detection, local-
ization, image enhancement, depth estimation, and colorization
using a single/multi-spectral approach. In this paper, we provide
a description of our benchmark with the recording platform, data
format, development toolkits, and lessons about the progress of
capturing data sets.

Index Terms— Dataset, advanced driver assistance system,
autonomous driving, multi-spectral dataset in day and night,
multi-spectral vehicle system, benchmarks, KAIST multi-
sepctral.

I. INTRODUCTION

ALONG with the start of the fourth industrial revolution,
the expectations of and interest in autonomous systems

have increased. A great deal of effort has been devoted to
reaching human-level reasoning of sensing, mapping, and
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Fig. 1. [Data & Tasks] (1st and 2nd rows) The KAIST multi-spectral dataset
for visual perception of autonomous driving in day and night. Dataset was
repeatedly collected by the KAIST Multi-spectral All-day platform traversing
in campus, urban and residential over several days. (3rd and 4th rows) The
collected RGB stereo, thermal image, LiDAR and GPS data enable study
into all-day vision problems such as image enhancement (red rectangles from
top-left to top-right), pedestrian/vehicle detection, colorization, drivable region
detection, driving path prediction with localization, dense depth estimation,
3D reconstruction.

driving policies, which are referred to as the three compo-
nents of autonomous driving. Because data-driven AI-based
methods have enabled breakthroughs in both academia and
industry, large-scale benchmarks have become one of the most
important factors to advance this technology. For autonomous
driving and advanced driver assistance systems (ADAS),
the KITTI [1] and Cityscapes [2] datasets have made it
possible to push the performance of visual perception methods
to previously inconceivable levels. However, most large-scale
datasets are mainly based on RGB-based images and thus
are only feasible in will-lit conditions as opposed to ill-lit
environments such as nighttime, dawn, sunrises, and sunsets.

To develop additional practical solutions, one of the main
challenges is robustness to all-day conditions. For this purpose,
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Fig. 2. Recording platform, sensor package, coordinates of sensors, and parts drawings. (a) Our SUV is equipped with sensor pack on the roof.
(b) The sensor package consists of two RGB and one thermal camera, one 3D LiDAR, and one integrated GPS/IMU device. All sensors are fixed on the
optical table for the fine-level calibration. (c) All sensors in the figure are numbered in brackets. Blue lines indicate a coordinate transformation between
sensors, and red lines indicate the connection of an external signal for the synchronization. In the calibration step, RGB(1) camera is used for the reference
coordinate. (d) Figures show examples of the assembly drawing. (e)∼(h) All figures show details of parts and the unit of measurement is mm.

we created a new type of large-scale dataset covering various
time slots in drivable areas. An example of data visualization
in term of data & tasks is shown in Fig. 1. To do this, we used
a thermal camera as a secondary vision sensor. Because a
thermal sensor measures a long wave-length radiation emitted
by subjects, it is highly advantageous for capturing scenes
regardless of the amount of lighting. Compared to previous
multi-spectral datasets [3], [4], we captured fully registered
RGB and thermal images through a special optical device
known as a beam splitter, which can reflect the visible
spectrum (RGB) and transmit the thermal spectrum. Therefore,
our multi-spectral image pairs undergo no loss of the rectified
distortions caused by the multi-spectral stereo-based method,
and they maintain the full resolution image. To this end,
we designed a new multi-spectral recording platform which
supports a co-aligned RGB/Thermal camera, RGB stereo, 3D
LiDAR and inertial sensors (GPS/IMU) with calibration and
synchronization techniques.

We gathered the dataset over an extended duration in
August of 2015 using a roof-mounted recording platform on a
sport-utility vehicle (SUV). Our dataset contains general traffic
situations with many static/dynamic objects in urban, campus
and residential areas. Essentially, we captured all scenarios

at well-lit and ill-lit times (day and night) and collected
fine time slots (sunrise, morning, afternoon, sunset, night and
dawn) on the campus. Compared to other places, a campus
is suitable for capturing similar perspectives according to
illumination changes. Each frame is tagged with high-precision
GPS measurements, (GPS combined) IMU accelerations and
object annotations including the type, size, location and occlu-
sion level. Based on multi-spectral data in all-day conditions,
we designed various subset benchmarks for visual perception
tasks, such as object detection, the drivable region detec-
tion, image enhancement, depth estimation, and colorization.
In this paper, we provide a detailed description to help readers
exploit our dataset and reproduce recording platform with the
development toolkits.

The remainder of the paper proceeds as follows: we intro-
duce our hardware configuration as used for data acquisition
in section II. At the same time, we discuss several issues of
importance when capturing high-quality data. The details of
multi-spectral data and ground truth supported by this dataset
are described in section III. We then, explain how to calibrate
multiple sensors section IV. In section V, first we present
development tools and explain how to operate them with a
short summary, after which we introduce various benchmarks
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for visual perception tasks. In section VI and VII, we explain
how our dataset differs from other datasets, and describe what
we learned while building and operating our system. Lastly,
we summarize the advantages of our dataset and suggest
directions for future research.

II. KAIST ALL-DAY PLATFORM

Our recording platform and hardware configuration are
illustrated in Fig. 2. We designed the multi-spectral recording
platform so that it holds all sensors on the optical table tightly,
which makes fine-level calibration more efficient. We mounted
our capturing system on top of a vehicle and housed a PC
(Intel i7-4980K processor) in the trunk. Because we needed
to maintain a transfer speed of at least 200MB/s for stable
and rapid data collection, we used a Samsung pro-850 SSD
(Solid-State Drive) which can secure sufficient bandwidth
compared to a HDD. Additionally, to minimize write latency
into storage, we attempted to keep memory usage under 80%
of the total capacity. Moreover, we used one Giga-E card and
one CAT7 cable in each sensor to prevent losses and to lower
the transfer latency of the sensor data. Our platform in Fig. 2.
(b) is equipped with the following sensors:

• 2× PointGrey Flea3 RGB camera (FL3-GE-13S2C-C),
1.3 Mega-pixels, 1/3” Sony ICX445 CCD, 1280 × 960,
400 ∼ 750nm, GigE, Computar Optics 12mm Lens,
26°(H) × 22.1°(V)

• 1× FLIR A655Sc thermal camera, ∼50Hz, 14bits data,
640 × 480, 17um detector pitch, 7.5 ∼ 14um, GigE,
25°(H) × 19°(V) with 24.3mm lens

• 1× Velodyne HDL-32E 3D LiDAR, 10Hz, 32beams,
0.16 degree angular resolution, 2cm distance accuracy,
collecting 0.7 million points/second, field of view: 360°
horizontal, 41.34° vertical, range: ∼70m

• 1× OXTS RT2002 inertial and GPS navigation system,
6 axis, 100Hz, L1/L2 RTK, resolution: 0.02m/0.1°

One of the main contributions of our system is capturing
fully aligned RGB and thermal images simultaneously without
a loss of the geometric distortion. This is made possible
because of the optical device called beam splitter, which
made of zinc oxide and silicon. Due to the use of a special
coating, it can reflect RGB wavelengths (380nm ∼ 700nm)
and transmit long-wave infrared light (8um ∼ 15um). Thus,
with this device, we can achieve a parallax-free pair of
RGB/thermal image with the proposed calibration technique.
The details of proposed the calibration are given in section IV.
With this procedure, we can create a fully aligned image
simply by rectifying a middle-resolution thermal image into
a high-resolution RGB(1) image. Note that the beam splitter
should be carefully fastened onto an optical table to prevent
bending, swaying, and vibration, as these factors can cause
unintended image distortion.

We used an A655sc camera, which has a long-wavelength
infrared (LWIR) sensor. The thermal sensor has the advantage
of having less an effect on illumination changes, as shown
in Fig. 4, and they have been used as night vision sensors
in many academic and industrial applications [5]–[7]. One of
the main challenges when handling a thermal sensor is the

Fig. 3. The top-view of the sensor configuration on the optical table.
The upper number is an actual measurement (mm) and the lower number is
the number of the hole between devices.

temporal change of the thermal contrast ratio according to the
amount of heating energy. To handle such changes, various
methods have long been studied. In our dataset, we provide
a raw data format for thermal measurements to guarantee a
proper level of user selection regarding how to deal with this
in the preprocessing stage.

We selected a long focal lens, which is favorable for
obtaining a sufficient safety distance between driving cars and
dynamic objects in actual traffic environments. At this time,
the major consideration is that the RGB and thermal lens must
be set in a similar field of view to guarantee the maximum
overlapping region between both cameras.

Optical table and camera jigs are designed for the fine
adjustment of each camera. The interval of holes in the optical
table is 12.5mm, and the adjustment range of each axis of
a camera jig is from −20mm to 20mm. The details of jigs
installed on the optical table are shown in Fig. 3. The jig of the
RGB camera has three axes (x, y, z) while that of the thermal
camera has two axes (x, z). The y-axis of the thermal camera
jig is excluded to prevent screws from becoming loosened due
to the weight of the sensor, or the vibration of the driving car.

We employed high-accuracy hardware-synchronization
using an external trigger, which is the reference signal of the
thermal camera. Along with the rising pulse of the reference
signal, all data from the sensors are captured. The details
of the multi-sensor synchronization process are given in the
following table.

To obtain high quality images, it was necessary to con-
trol the exposure and shutter speed during the capturing
step. Therefore, we set these values shorter than the sensor
synchronization period (<40ms). Unlike cameras, Velodyne
and GPS/IMU sensors are synchronized by software because
these sensors do not support external triggering. To inte-
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Fig. 4. Examples from KAIST multi-spectral dataset in day and night. From left to right, we show the RGB(1), RGB(2), thermal, fused images to overlay
the thermal to RGB(1) images, and 3D points cloud. Compared to RGB sensors, the thermal sensor is advantageous in extreme lighting condition and can
therefore be used both during the day and at night. They can also be used in special conditions such as foggy or otherwise poor weather. Compared to NIR
sensors, the LWIR (thermal) type is not affected by headlights (known as the blooming effect), thus allowing their users to avoid dynamic objects in nighttime
driving environments.
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Fig. 5. Statistics of captured images in various scenarios. There is a
statistical difference in the dataset for the same route depending on the driving
style. (a) Campus. (b) Residential. (c) Urban.

grate hardware and software synchronization into our system,
we adjusted the acquisition speed of software-based devices
to that of hardware-based devices. In this way, we updated
partially scanned LiDAR data and sampled the position infor-
mation (GPS/IMU) using a timestamp to minimize a synchro-
nization slip between devices with different cycles.

III. DATASET SPECIFICATIONS

Our contribution is that our dataset contains large-scale
multi-spectral sequences in various time conditions. An exam-
ple of such a contribution is shown in Fig. 4, which was
captured at the same location during a day and night. In this
section, we provide a description of our benchmark with
details of each modality from capturing to saving, grabbing,
and annotating.

A. Multi-Modal Data

1) General Information: Prior to capturing data, we man-
ually tuned the shutter speed and exposure time of the RGB
and thermal camera considering the surrounding environments
and time of day. In addition, because the type of thermal
sensor used is an uncooled camera, we utilized non-uniformity
compensation (NUC) to ensure the image quality. By covering
various regions such as campus, city, and residential areas,
we attempted to prevent our dataset from becoming biased to
a specific location. We principally captured each location in
day and night conditions and also collected campus data in
fine-time slots (sunrise, morning, afternoon, sunset, night and
dawn). Compared to other locations, the campus is a superior
location for capturing similar environments at different time
slots without an interruptions by traffic, and the detection
target can be properly balanced. The datasets for the locations
used here are shown in Fig. 5.

2) Images: Image data is stored in raw form without any
processing to minimize the write latency, and RGB and
thermal images are respectively logged as 8-bit images on

Fig. 6. Grabber is a tool for real-time logging and visualization of incoming
data from multiple sensors.

three channels and as 16-bit images on one channel. For
better visualization of a thermal image which supports a
high-dynamic resolution (HDR), post-processing steps such as
histogram equalization can be employed. However, we simply
logged untreated data considering expandability by the user.
Note that because the reflectivity of the beam splitter is not
perfect, RGB (1) and RGB (2) through the beam splitter have
slightly different intensity levels in some sequences. Captured
RGB and thermal images have a great advantage with regard
to detecting pedestrians and vehicles that are farther away
because we used a long focal lens.

3) GPS/IMU: The inertial data is synchronized and logged
along with other sensor data (25Hz). For every frame, we pro-
vide 19 different GPS/IMU values: global positions including
the altitude, acceleration, angular rates, velocities, global ori-
entation and signal quality information, among other types.
Mercator projection is used to draw geographic coordinates
based on the global position on a 2D google map, and related
toolkits are also provided.

4) Velodyne: We provide range and reflectance images
generated from Velodyne in sync with 2D vision sensors. For
synchronization between devices with different cycles, it is
common to operate on a slow cycle. However, our dataset
is intended to collect data at high speeds. Therefore, for
sensors having a slow cycle, the data is partially updated
instead of being fully updated at every frame. In other words,
we partially update only 144 degrees out of 360 degrees
(40%) in time. Range and reflectance images are saved in the
16-bit/one channel and 8-bit/one channel formats at the same
size, respectively. The size of a range image is 32 ×12 ×180,
the number of 3D points in each frame is approximately
0.7 million. To convert the image to 3D points, we also provide
the individual angular information of all vertical scan lines.

B. Grabber and Ground Truth

1) Grabber: As introduced in Fig. 6, our grabber has two
roles: the logging and visualization of incoming data. Data
is managed as a binary file, and the recording structure is
shown in Table I. The most important role of the grabber is to
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TABLE I

OVERVIEW OF THE DATA FORMAT IN A BINARY VIDEO. THE LENGTH
OF ONE DATA CYCLE IS 8,199,184bytes, AND THIS INCLUDES FIVE

SENSORS DATA CAPTURED AT THE SAME TIME. EACH SYMBOL H
AND D INDICATE HEADER AND DATA. MORE DETAILS ARE IN

INFO_PACKET.txt

Fig. 7. With this Annotator, users can efficiently annotate all-day sequences
contained in RGB and thermal images.

record data in keeping with the acquisition signal without any
jitter or latency. If there is a GigE problem with the network
transmission of certain sensor data, the incoming data is then
discarded by the grabber. Additionally, the grabber uses a
visualization tool to alert users if the incoming data is in an
abnormal state. For example, if DGPS is unable to guarantee
the number of receiving satellites due to the heights of the
surrounding buildings or the weather, it will send a warning
message about the signal quality.

2) Annotation of a Moving Object: For various percep-
tion tasks, we manually labeled the dynamic objects of
all sequences. Before annotating labels in moving objects,
we defined the annotation targets and types, referring to previ-
ous datasets [1], [2]. At this time, individual targets and groups
are separately managed, and if targets are difficult to recognize,
they are excluded as evaluation targets by annotating then with
the term ignore. Finally, while drawing bounding boxes (BBs),
users can select one of the following labels: person, car,
cyclist, people, cars, or ignore. The annotation toolbox (Fig. 7)
for the process described above was created by modifying and
supplementing a toolbox [8] distributed by Piotr. The modified
toolbox uses both of RGB and thermal images to obtain tight
and accurate BBs in poor lighting conditions or in the event
of the halo effect.

Fig. 8. Pattern boards for multi-spectral camera calibration. (a) Chess-
board [10]. (b) Grid-board [11]. (c) Circle-board [12]. (d) Line-board (Ours).

3) Dense Depth Map: The depth data can be obtained by
a depth sensor or stereo-type camera, and each method has
its strengths and weaknesses. Velodyne-32E is a good range
sensor to measure physical distances; however, it is insufficient
to provide high-density depths such as those obtained by a
stereo. Unlike the Velodyne device, a RGB pair (stereo-type
cameras) can give a dense depth map, but the quality of the
depth is not better than that of a range sensor. Furthermore,
at night and under ill-lit conditions, it is difficult to provide rea-
sonable depth values. Thus, we made an effort to provide high-
density and accurate depth data in day time conditions with
the two aforementioned approaches. In other words, we used
the RGB patch-matching-based stereo method [9] combined
with 3D point-based refinement. To obtain high-density depths
even under ill-lit conditions, such as those in good lighting
conditions, we are undertaking the reconstruction of 3D world
as sparse 3D points combined with GPS/IMU. In the near
future, we hope to release more accurate depth information
for both day and night time.

IV. CALIBRATION

In this section, we describe multi-modal calibration methods
between the RGB and thermal cameras (cam-to-cam) and for
the RGB and Velodyne device (cam-to-LiDAR). To obtain pre-
cisely aligned multi-modal data, the calibration must be taken
when computing the intrinsic parameters of each sensors and
extrinsic parameters between sensors. The overall coordinates
of the sensor calibration are illustrated in Fig. 2. (c). We define
the RGB (1) as the reference camera coordinate. Because the
RGB (1) and thermal cameras are adjusted to be aligned,
the centers of the coordinates (O1 and O3) are shared.

A. Multi-Spectral Camera Calibration

To capture the fully aligned RGB and thermal pairs, extrin-
sic calibration between the cameras should be done. Due
to the different imaging properties (RGB: 450nm − 700nm,
thermal: 7um − 13um), conventional methods to find the
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Fig. 9. Geometrical calibration process of multi-spectral cameras. The overall process is similar to stereo calibration, and corner point optimization and
changing a pose process are different from the conventional method.

correspondences are not accurate when used for multi-spectral
calibration. Moreover, the blurry effect of thermal images
which is caused by the diffusion of heat radiation and the
shallower depth of field makes it difficult to extract accurate
corner points. Therefore, one of the main issues is accurately
extracting the corresponding points for computing relative
poses between sensors.

A uniformly printed chess board, as shown in Fig. 8.
(a), is the most popular pattern for RGB camera calibration.
Although the black and white pattern is useful to extract corner
points in RGB images, this pattern is rarely recognized in ther-
mal images because the intensity of thermal images depends
on the omitted energy rate from objects, not the visible colors.
Therefore, various specially designed pattern boards have been
proposed. The basic concept is that the different materials
and radiated devices create temperature difference to facilitate
recognition of the edges in thermal images. Moreover, most
patterns can be used to calibrate RGB images for multi-
spectral calibration. Mouats et al. [11] proposed a handmade
grid-based pattern board which is punched onto a box board
to allow heat to penetrate, as shown in Fig. 8. (b). During
the calibration step, heating sources such as a laptop or steam
are placed behind the board. Although this pattern is simple
to use, it is easy to bend itself, and it is not easy to create
a sharp grid in the manufacturing step. Jung et al. [12] was
the first to propose pattern which pierces circular holes onto
a metal board (Fig. 8. (c)) for calibration between a time of-
flight (ToF) sensor and a RGB camera, and Hwang et al. [13]
employed this pattern to calibrate RGB and thermal cameras.
The circle-board pattern is used to extract the center points of
each hole instead of corner points. However, the center points
of circles can easily be distorted by dual circles which occur
in the lateral view due to the thickness of the metal board.
Moreover, because the board has a wider contact area, it is
difficult to maintain the temperature on the board uniformly.
To overcome these limitations, we proposed the line-based
pattern board shown in Fig. 8. (d). A detailed description
of this board and the multi-spectral calibration method are
presented below.

Fig. 10. The results of corner points optimization in Fig. 9. Magenta
circle is the initial corner point, and blue circle is optimized point moved
from magenta.

1) Line-Based Pattern Board: We designed a line-based
pattern board which accurately calibrates RGB and thermal
cameras. Copper lines are regularly milled onto a printed
circuit board (PCB) 2mm wide and spaced at 40mm, and
six and seven lines on each axis are printed to provide
intersections. Note that we used different numbers of lines
to eliminate the ambiguity of the corner point in the hori-
zontal/vertical direction. Our line-grid pattern is more apt to
maintain high contrast in thermal images because the copper
line has good conductivity to maintain a uniform thermal
distribution. Moreover, as the proposed pattern is identical in
terms of the geometry to a conventional chess board, it can
easily be adapted to many existing calibration techniques.

2) Overall Process: The overall diagram for multi-spectral
camera calibration is shown in Fig. 9. This process mainly
consists of two stages (calibration and alignment). During the
calibration, these stages are repeated until it meets the stop
conditions. Calibration is the process of obtaining the intrinsic
and extrinsic parameters of each camera using corresponding
points, and alignment is the process of making the geometric
distance between the optical axes of RGB and thermal cameras
almost zero. As shown in Fig. 11, as RGB and thermal cameras
have different imaging properties, conventional RGB-based



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 11. Examples of calibration results: (left) RGB images, (middle)
thermal images, and (right) fused images.

corner detection methods cannot guarantee an accurate result.
Therefore, we proposed a greedy-based optimization approach
to ensure accurate corner points in the thermal image.

To find the optimal solution, we initially define the fol-
lowing guidelines: fc(k, θ) = [k + s · cosθ, k + s · cosθ ±
o · sinθ ]. The intersection of the guidelines (red and green
lines in Fig. 10) defined by two axes is finally obtained by
the optimal solution of an initial point (the magenta circle
in Fig. 10). At this time, guidelines are constrained with a
penalty to the boundary of the lines and with a constraint of
orthogonality. In other words, the initial corner point (magenta
circle in Fig. 10) should be guided to the pixel with the highest
temperature on both axes (the highest intensity value), and
these two axes should be close to a right angle, as indicated
in Fig. 10. Note that (x , y) are the position of the corner points,
θr is the angle between the x axis and the red guideline, and
θc is the angle between the y axis and the green guideline. The
objective follows Eq. (1), and we use Levenberg-Marquardt
optimization method.

min
x,y,θr ,θc

Ed (x, y, θr , θc) + β · Es(θr , θc) (1)

Es(θr , θc) = ‖cos(θr − θc)‖
Ed (x, y, θr , θc) = ‖2 − V (x, y, θr ) − V (x, y, θc)‖

V (x, y, θ) = I ( fc(x, θ), fc(y, θ))

Fig. 12. Pattern boards and calibration toolkit. (Left) pattern boards for
calibration of RGB camera and Velodyne. (Right) depth examples captured
by depth sensor and 3D points marked by a tool for extracting wall-planes.
(a) Geiger et al. [14]. (b) Herrera and Heikkila [15]. (c) Unnikrishnan and
Herbert [16]. (d) Ours.

After the each calibration step, we manually change the pose
of the RGB (1) camera according to Trelat ive. Because our
camera jigs are designed to make fine adjustments, repetition
of this process is completed within a few times. Finally,
we obtain the co-aligned RGB and thermal camera settings
and fully registered multi-spectral images spatially.

3) Calibration Result: To verify the proposed method,
we undertook calibration with the proposed greedy-based opti-
mization method and without it. To do this, we captured RGB
and thermal images (the left/middle of Fig. 11) and computed
the intrinsic and extrinsic parameters. After calibration step,
we obtained an aligned multi-spectral image, as shown on the
right in Fig. 11. In the table in Fig. 10, the proposed corner
-point optimization method can reduce re-projection errors in
RGB and thermal images by half (RGB: 0.73 to 0.31, thermal:
0.78 to 0.38). We note that the initial magenta point moved to
the peak point of the high-intensity region, which is equivalent
to the intersection of the red and green lines (Fig. 10).

B. RGB and Velodyne Calibration

For the RGB (1) and Velodyne calibrations, we took advan-
tage of a wall structure in the real world. Our methods used
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Fig. 13. Calibration results of RGB camera and Velodyne. (From
left to right) RGB images, RGB images with reprojected pattern points, and
RGB images with reprojected point-clouds.

the geometric relationship known as plane-to-plane mapping
between sensors; therefore, it does not need specially man-
ufactured calibration targets such as pattern boards or 3D
structures. For practical calibration, we attached only printed
chess-board patterns on three side walls and walls do not have
to be located in an orthogonal structure (Fig. 13). In previous
works, the authors presented point matching-based calibration
methods [15], [16]. Users manually marked the corresponding
points via the provided the toolkit in RGB and Velodyne
images and the relative pose was computed by point-to-point
mapping optimization. However, this method cannot guarantee
that the points corresponding to RGB-based points are scanned
in 3D LiDAR due to the angular resolution of 3D LiDAR.
Geiger et al. [14] used multiple chess boards or a triaxial
calibration target to find the geometric relationship between
heterogeneous sensors. If the image takes all these targets, this
method can be used with a single image to obtain the extrinsic
parameter. To compute this parameter, the author undertook
automatic plane segmentation to extract the calibration target
from images. However, this type of method involves capturing
the image in restricted conditions, such as a special purpose
room with blackout windows. Compared to previous works,
the proposed method is simple and practical in cases where it
is difficult to prepare enough space with numerous calibration
boards or to manually extract points in scanned 3D LiDAR
and multiple RGB images.

1) Wall-Attached Pattern Board: The preparation steps to
be taken when using the proposed method involve attaching
the printed chess boards on a wall with three sides. First,
we captured the scene, including the three side walls with the
attached pattern boards in both RGB and Velodyne images.
The pattern board is used to extract the corner points for

the RGB camera and the scanned wall is used to extract the
plane for the Velodyne device. To do this, we used a general
chess board pattern of the type which is generally used for
RGB calibration (a grid spacing of 40mm), and used a printed
sheet which prevents the effects of reflected light. Because the
smoothness and flatness of the wall are the only considerations
of our method, the three walls do not necessarily have to
be orthogonal. Moreover, our method has the advantage of
being extend to RGB and general depth sensors (e.g., Kinect
and ToF).

2) Overall Process: The process can be divided into two
stages: plane extraction and plane registration. We initially
conduct plane extraction with the RGB and Velodyne data
and then register the plane to obtain the relative pose between
the sensors.

We assumed that the radial distortion of RGB images
has already been removed with intrinsic parameters obtained
through the previous camera calibration. The procedure to
estimate three planes from the RGB images is as follows.
First, we manually extract the corner points of the three wall-
attached chess boards in the RGB images. Based on the RGB
camera calibration, we compute the plane parameters of each
wall using the extrinsic relationship between the points of
the image coordinates and those of the world coordinates.
To extract the plane from Velodyne, we convert 3D measure-
ment into a range image consisting of the depth according to
the vertical/horizontal angles. We then mark four points on
each wall to compute the plane parameters and created the
plane pair from that of the RGB image and the plane from
Velodyne (Fig. 12. (d)-right).

Finally, to register the three planes extracted from each
sensor, we use the Levenberg-Marquardt (LM) method to
optimize the following objective function.

min
R,T

E(Vx , Ix ) = Edist + α · Eang + β · Eint (2)

Eint = fi (Vo, Io)

Edist = fd (V L
p , I L

x ) + fd (V R
p , I R

x ) + fd (V F
p , I F

x )

Eang = fθ (V L ,R
l , I L ,R

l ) + fθ (V R,F
l , I R,F

l )

+ fθ (V F,L
l , I F,L

l )

Here, Vx and Ix indicate the 3D points on the three walls
within the captured range and the RGB image, and Vp denotes
the three walls within the captured range image. Vl and Il are
the intersection lines among the planes, and Vo and Io are the
origins of the sensors. The upper subscript denotes the type
of wall, in this case left, right, and floor. fd returns a distance
value between a plane and the 3D points, fθ returns an angle
value between the intersection lines, and fi returns a distance
value between the origin points of each sensor.

3) Calibration Result: To verify the RGB and Velodyne
calibration, we undertook a qualitative evaluation, as shown
in Fig. 13. Fig. 13. (b) shows the reprojection of 3D pattern
corners and the 3D intersection corner. Fig. 13. (c) shows the
reprojection of 3D points from Velodyne on the 2D image after
external calibration between RGB and Velodyne. As shown
in Fig. 13, the calibration of the RGB camera and Velodyne
are performed well from the plane-to-plane registration.
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Fig. 14. Samples from the MATLAB development tools. (a) thermal video frames, (b) RGB(1) video frames and projected Velodyne points, (c) RGB(2)
video frames and bold red dot-boxes indicate annotated bounding boxes of moving objects, and all video frames are undistorted and calibrated. (d) perfectly
aligned RGB-thermal frame pairs (e,f) the current location and position of the vehicle, (g) depth video frames which are made by depth estimation method [9]
using RGB stereo image and Velodyne 3d points. (h) 3D point cloud generation from a dense depth map. This development kit are available from the KAIST
multi-spectral website.

V. DATASET ACCESS

A. Development Kit

We provide a MATLAB toolbox for easy access and manip-
ulation of the raw dataset. This toolkit supports a sequence
decoder and several demos for each task. Several processed
examples are shown in Fig. 14 and the provided functions are
as follows.

1) Sequence Decoder: The function GetFrame.m reads
binary sensor data from a specific raw sequence and
returns manipulated images and meaningful data, such as
14-bit/8-bit thermal images, stereo-type color images, range
and reflectance images of 3D LiDAR (Velodyne), and the
latitude/longitude and relative 6D position with a timestamp.

2) Undistorted and Rectified Images: The function GetRec-
tifiedImages.m removes lens distortion from each camera
and rectifies the images between cameras. This function
returns perfectly aligned RGB-thermal images, rectified RGB-
RGB images, and rectified RGB-thermal images. The func-
tion GetRGBTFusion.m demonstrates precisely how to align
the RGB and thermal images, as shown in Fig. 14. (d).

3) Bounding Boxes and Labels: The ground truth of the
annotator is managed in the video bounding box (VBB) format.
The function GetBBLabel.m decodes the VBB file and returns
the class labels and positions of the bounding boxes in
each frame of the video. VBB also provides an occlusion
flag for individual objects, and red/yellow/green BB means
no/partial/heavy occlusion, respectively.

4) 3D Point Cloud Projection: The function GetVeloIm-
age.m returns 3D point cloud (360/FoV) and projected point
cloud into the reference RGB (1). Note that 3D points are
measured in units of meters and 3D points over 70m are
removed. The local function Convert2Dto3D.m provides 3D

points based on Velodyne. To project to the RGB (1), it is
necessary to change the coordinates of the 3D points from
Velodyne to RGB (1) using an extrinsic parameter, after which
the converted points are projected by an intrinsic parameter.

5) Vehicle Trajectory: The function ShowVehiclePath.m
shows how to read and display the vehicle trajectory using
GPS/IMU data. Note that it does not use all of the data
provided by RT2002 and instead uses latitude and longitude
for translation, and the roll, pitch and heading information for
rotation. The function ConvertOxtsToPose.m returns the 6D
position of the vehicle in Euclidean space. For this conversion,
we utilize the Mercator projection method [1].

6) Dense Depth Images: The function GetDepthImage.m
returns two types of dense depth images depending on the
option. As a first option, SGM [17] is a dense stereo matching
method that can be used for accurate 3D reconstruction from
a pair of calibrated images. As a second option, MC-CNN [9]
undertakes stereo matching by training a convolutional neural
network based on image patch matching. We fine-tuned the
network to our dataset; the image-based depth results are
refined by 3D Velodyne points.

7) Integrated Visualizer: The function Viewer.m shows an
integrated visualizer. We can demonstrate all functions of
development tools using a graphical user interaction (GUI).
We expect that the user can extend our functions to various
purposes to the greatest extent possible.

B. Subset Benchmarks

We designed the subset of the visual perception tasks with
the KAIST multi-spectral dataset. As a canonical imaging sen-
sor, RGB images have been used as inputs in many computer
vision and robotics researches. These works focused on mining
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more useful information from only RGB image to be robust
in various conditions ( [18]–[20]). While the vast majority
of camera networks still employ traditional RGB sensors,
recognizing objects in case of illumination variation, shadows,
and low external light is still challenging open issue. Hence,
this led to the question of how it would be possible to robustly
perceive the world for all-day. We believe that the answer
will rely on the use of alternatives to RGB sensors such as
depth or thermal imaging devices. In recent times, there have
been two main streams using multi-modal information. The
first is the methodology using multi-modal information during
training and inference. In fact, these works have shown that
the multiple image modalities can be used simultaneously to
produce better recognition models than either modality alone
in the challenging scenarios to RGB images ( [13], [21]–[23]).
Another approach is using multi-modal information during
training, which is used to learn to hallucinate features from
RGB images, and the trained model performed well on RGB
images alone as input during inference. For these purposes, our
dataset can be useful to deal with many tasks of autonomous
system with respect to multi-modal data fusion approaches as
the first way, and RGB-based approaches from multi-modal
feature learning. According to the tasks, an additional data
can be used in conjunction with the subset benchmarks. For
details about the benchmarks and evaluation metrics, we refer
the reader to several earlier works [13], [24]–[27], and our
project website.

1) Object Detection: Object detection is a crucial part of
building intelligent vehicles and an advanced driver assistance
system (ADAS). Specifically, because autonomous emergency
braking (AEB) for pedestrian protection is to be deemed as
an important evaluation item in Euro NCAP starting in 2018,
the interest in object detection is growing. To assure pedestrian
protection for day and night, additional sensors such as a
thermal camera and LiDAR are required. Hence, we created
an object detection benchmark to encourage researchers to
develop accurate detection algorithms for day and night. For
this benchmark, we provide bounding boxes with occlusion
flags as the ground truth on RGB-Thermal images for the
Campus, Residential and Urban settings. There are 52,826,
5,205 and 250,882 bounding boxes (BBs) for person, cyclist
and car, respectively. A statistical analysis of the BBs for
object detection provides a scale distribution and an aspect
ratio distribution, as indicated in Fig. 15.

2) Vision Sensor Enhancement: We designed a multi-
spectral benchmark which is used for up-sampling or detail
enhancement. By solving these problems, we can offer a
competitive price of the thermal sensor. In addition, we expect
greater sensor popularization. We provide two types of subsets.
For the first subset (RGBT-67), RGB-thermal pairs are sam-
pled from multi-spectral sequences. This consists of a train
set (57) and test set (10), all of which are available at a
resolution of 640 x480. In addition, we offer an additional
test set (T-137) captured in a different scenario (urban).
It was collected using FLIR-MSX technology, which supplies
thermal and RGB images together.

3) Depth Estimation: We designed the first multi-spectral
stereo benchmark from day to night in various real-driving

Fig. 15. Statistics for object bounding boxes. (a) is shown in the number
of BB according to the height size of each object, and (b) is shown in the
number of BB according to the aspect ratio width to height size.

conditions. From our benchmarks, we initially select a RGB
stereo pair with dense depth maps and thermal images, i.e., co-
aligned to the left-view RGB image. For depth estimation,
we separate the urban area into downtown and suburbs for a
more diverse dataset of drivable regions. In total, we provide
8,970 stereo/thermal pairs, consisting of training (4,534) and
testing (4,436). Compared to the previous depth dataset, our
benchmark supports co-aligned RGB and thermal pairs with
high-quality depth maps and even test samples at night time.

4) Multi-Spectral Colorization: Many colorization methods
have been proposed for various purposes such as image
restoration, synthesis, and virtual data generation. Recently,
deep-learning-based techniques have showed high perfor-
mance in the RGB domain [28], [29] and in the multi-
spectral domain [30]–[32]. With completely aligned RGB and
thermal images, we can create a new large-scale RGB and
thermal colorization benchmark which considers the driving
conditions. For compatibility with other tasks, the colorization
subset contains four scenarios (campus, urban, suburb, and
residential) and both the train and test samples are identical
to the stereo benchmark. We provide raw images with no pre-
processing methods such as tone mapping or HDR applied.
In addition, we provide compressed thermal images (8-bit)
for visualization.

VI. COMPARISON WITH OTHER DATASETS

In the section, we compare our benchmark to other datasets
in terms of ADAS and autonomous driving as well as multi-
spectral configurations. As numerous works about ADAS and
autonomous driving have been conducted, many datasets have
been published. However, this paper only deals with recent
large-scale studies. In addition, it deals with studies similar
to ours in terms of data acquisition or sensor installation
environments.

A. Datasets for ADAS and Autonomous Driving

1) KITTI: Our benchmark is inspired by the KITTI [1]
dataset, influential benchmark which has been widely used
for quantitative comparisons of various computer vision and
robotics tasks. We intend to mimic KITTI to provide a rich
source of multi-modal data in normal conditions in addition
to challenging conditions with a thermal imaging sensor.
Therefore, we can provide the first multi-spectral dataset for
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use in actual driving conditions which contains co-aligned
high-resolution RGB and thermal pairs, object annotations,
3D information (depth, point), vehicle positions and driving
paths (GPS, IMU) in every synchronized frame for all-types
of days. Moreover, we made an effort to prevent bias in certain
object classes.

2) Cityscapes: Cityscapes [2] is the first large-scale dataset
for pixel-level and instance-level semantic segmentation in
urban street scenes. Compared to our recording platform, RGB
stereo video is the main instrument used to capture the dataset
in normal conditions. In this version, we focus on all-day
perception for object-level information, which is better than
pixel-level annotation. However, we expect that our dataset
can be extended to pixel and instance-level segmentation in a
similar manner to Cityscapes, which uses RGB stereo pairs.

3) RoboCar: RoboCar dataset [33] focuses on long-term
autonomous driving. It was collected in various weather
conditions, including heavy rain, night, direct sunlight and
snow. Compared to our dataset, cameras provide a full
360-degree visual coverage of scenes around vehicles. In addi-
tion, although they do not use an all-around 3D LiDAR
system such as Velodyne, they support a 3D point-cloud
jointly generated from 2D LiDARs and cameras. Our dataset
is also created to cover various driving conditions. Particularly,
when we captured the dataset, we attempted to capture more
challenging time slots, such as sunrises, mornings, afternoons,
sunsets, and night and dawn scenes.
TorontoCity TorontoCity dataset [34] provides different per-
spectives of the world captured from airplanes, drones, as well
as cars driving around a city. This dataset contains aerial
images, street-view panoramas, street-view LiDAR and air-
borne LiDAR. These data sources are aligned in the maps
to generate accurate ground truth. Compared to our dataset,
the TorontoCity dataset is focused on static environment
recognition instead of the dynamic objects (e.g., pedestrians,
vehicles) mainly handled in existing datasets, including ours.
Moreover, this dataset does not consider the various capturing
conditions mentioned above.
VirtualKITTI VirtualKITTI [3] is large-scale synthetic
dataset which provides photo-realistic virtual worlds with
accurate ground truth outcomes for object detection, tracking,
scene and instance segmentation, depth, and optical flows. It is
similar to our benchmark in that it also provides a dataset
which can be used in many different environmental conditions
(e.g., morning, sunset, overcast, fog, rain), but it differs from
the proposed dataset in that it does not use additional robust
sensors in a virtual environment.

B. Multi-Spectral Datasets for ADAS

1) Multi-Modal Stereo Dataset (CVC-15): CVC-15
[35] [36] is stereo dataset which attempts to be a solution
to the locating of correspondences between multi-spectral
sensors. This dataset consists of 100 pairs of RGB-thermal
images which were captured in different urban scenarios but
not driving environments. Although CVC-15 was captured
using a Bumblebee stereo camera, it is difficult to use it
for various applications because it does not collect stereo

image pairs or depth images. On the other hand, because
our dataset consists of RGB-RGB-thermal images, we can
provide pairs of stereo images and depth images in addition
to RGB-thermal images.

2) Color and Thermal Stereo Dataset (CATS): The
CATS [37] dataset focuses on the stereo matching of various
spectra, including those of RGB and thermal images. It con-
sists of stereo thermal, stereo RGB, and cross-modality image
pairs with high accuracy ground truth outcomes (<2mm)
generated from a LiDAR system. Compared to the pro-
posed dataset, CATS is smaller, containing approximately
1400 images in various environmental conditions (e.g., day,
night, and foggy scenes).

3) Multi-Spectral Pedestrian Dataset: Multi-spectral Pedes-
trian Dataset [13] is the first large-scale multi-spectral dataset
for pedestrian detection in day and night. This dataset consists
of RGB-thermal image pairs captured in a driving environ-
ment. However, the multi-spectral pedestrian dataset supports
grayscale thermal images (8-bit) for image processing instead
of raw images (14-bit). This type of grayscale thermal image
has an advantage in that it can easily be handled in the form
of the RGB image in terms of a visualization and applied
algorithms. However, pre-processed thermal images cannot
be directly converted with regard to accurate temperatures,
such as those on the Kelvin or Celsius scales. Moreover,
our benchmark has directly advantage of being applicable
to various areas related to computer vision and intelligent
vehicles.

VII. LESSONS LEARNED

In this section, we summarize some of the issues to
consider when capturing a dataset, from preparation to fin-
ishing. Through our lessons, we hope that the difficulties
of researchers who want to build a similar system can be
resolved.

A. Preparing Collection

1) Camera Resolution: It is the common choice to select a
high-resolution camera, as larger images contain more visual
information. However, before choosing the maximum resolu-
tion, several issues must be considered, such as the bandwidth
for data transmission and the writing speed of the SSD used for
image storage. Taking all of these factors into consideration,
it becomes possible to select a camera successfully within the
allowable range.

2) Camera Lens: In our case, we select a long focal lens
to observe remote objects. If wanting to a wider field of view,
a short focal lens may suffice. Recently, Tesla and Mobileye
devised trifocal camera system (HoV−20°, −50°, −150°) as
a new hardware configuration. A trifocal camera at the top of
the windscreen can help identify pedestrians or various targets
(e.g., forward vehicles, traffic lights, traffic signs) that stand
at the different depths.

3) Camera Synchronization: There are two ways to syn-
chronize multiple cameras: hardware triggers and software
triggers. As software methods have some latency time, hard-
ware synchronization via an external trigger is typically used
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wherever possible. In recent years, a feature called a signal
generator has been added to the camera to match the shutter
times between devices. We also used this function to capture
images simultaneously. However, despite the use of a signal
generator, there is drift due to the differences in the exposure
times between the devices. Therefore, there remains an asyn-
chronous phenomenon wherever excessive movement of the
vehicle occurs, such as a corner or a bump.

4) 3D LiDAR: The selection of 3D LiDAR depends on the
vertical fields of view of the vision cameras used together.
Because Velodyne provides sparse 3D points (from 16 to
64 vertical lines), we recommend the use of 3D LiDAR with
a dense angular resolution or the use of several units together
to compensate for the scanning spaces of individual units.

5) Collecting Environment: One important aspect for data
collection is the road condition and surrounding complexity.
Unpaved roads, construction sites, and areas with speed bumps
are not good places to capture data. Unless deliberately choos-
ing such places, it is best to avoid them. Another important
aspect of data collection is the level of difficulty according
to the number of objects. Therefore, it is necessary to choose
locations which have a suitable level of difficulty depending
on the task.

B. Before Collection

1) Periodic Calibration: Although our sensors are tightly
equipped in a rigid and sophisticated system, it is not easy to
maintain high-quality calibration between devices due to vibra-
tions and shocks generated by bumpers and unpaved roads.
For these reasons, sensor calibration is periodically required.
Going one step further, in order for the sensor package to be
commercialized and attached to the vehicle, an auto calibra-
tion feature must be included. Compared to other papers [1],
[37] which fixed sensors by bar types structure, our system
has an advantage of relatively less tolerance of the calibration
because we fixed all sensors on the optical table. Before
data collection, the list that requires a periodic inspection is
as follows: the screw statuses of the camera jig and splitter
jig. In addition to periodic calibration, calibrating the device
according to power on/off settings is required, and DGPS is a
typical example. Before data capturing, it is necessary to check
the current position of the vehicle through DGPS. If there is
a position drift, DGPS calibration should be done.

2) Storage Space Check: SSDs are known to operate at low
writing speeds when using more than 80% of the total storage
space. Therefore, it is preferable to secure sufficient space on
SSDs before collecting data.

C. During Collection

1) Camera Parameters: Because the camera is synchro-
nized by an external trigger, we set the exposure time such
that it is not longer than the trigger time. At night, we set the
camera parameters to capture images as brightly as possible.

2) Guidelines for Driving: It does not matter who drives
the experimental vehicle, but the following aspects should be
considered in advance. When capturing data, it is necessary to
follow guidelines related to the average speed during straight

Fig. 16. The updated periodic pattern of data. According to this pattern
(X O X O X), frontal 3D point clouds (10Hz, red region) are updated in 2 times
out of 5 times. This figure is top-view, and field of view (FoV) of the thermal
camera (25Hz) is overlapped on a red region. Gray color indicates updated
angular regions according to the cycle and black-bar is a reference coordinate
of Velodyne.

ahead operations and during rotation. In addition, the more
similar the pattern is for acceleration and deceleration, the bet-
ter the dataset to be obtained. It is good to reduce the speed as
much as possible when passing over speed bumps or through
construction sites.

D. After Collection

1) Post-Processing: All data is stored in a raw format for
research scalability. In other words, we did not use a specific
format for image storage, such as the bmp or jpg formats.
Sensor data is collected and managed in video form rather
than in each frame because many fragmented files can be a
burden on the file system such that the risk of file corruption
is increased.

2) Velodyne Parsing: As mentioned above, all sensors are
synchronized to the reference signal generated by the thermal
camera. The RGB and thermal cameras of a sensor sys-
tem operate at 25Hz and LiDAR operates at 10Hz. When
one RGB/thermal image is stored, LiDAR data is updated
only in 72 degrees of 360 degrees. Therefore, the pres-
ence or absence of LiDAR synchronized with the RGB/thermal
image repeats the following pattern: (X O X O X). The per-
fectly synchronized RGB/thermal image and Velodyne points
can be used by parsing, referring to the following Fig. 16.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have presented the KAIST multi-spectral
dataset, which is focused on all-day vision and extreme illu-
mination changes for autonomous driving. With our dataset,
we intend to challenge current approaches to all-day vision
tasks, and this advance enables research for all-day and
lifelong learning for ADAS and autonomous vehicles. Because
many researchers in industry and academia are interested in
day and night problems, we will provide a benchmark service
similar to KITTI using a common ground truth and evalua-
tion criteria. Moreover, we will provide more sophisticated
benchmark algorithms, such as off-the-shelf deep learning
architectures. Finally, we hope that numerous researchers can
create their own specific applications with our multi-spectral
dataset.
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