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Abstract

This paper presents a method to assign a semantic la-
bel to a 3D reconstructed trajectory from multiview image
streams. The key challenge of the semantic labeling lies
in the self-occlusion and photometric inconsistency caused
by object and social interactions, resulting in highly frag-
mented trajectory reconstruction with noisy semantic la-
bels. We address this challenge by introducing a new rep-
resentation called 3D semantic map—a probability distri-
bution over labels per 3D trajectory constructed by a set of
semantic recognition across multiple views. Our conjecture
is that among many views, there exist a set of views that are
more informative than the others. We build the 3D semantic
map based on a likelihood of visibility and 2D recognition
confidence and identify the view that best represents the se-
mantics of the trajectory. We use this 3D semantic map and
trajectory affinity computed by local rigid transformation
to precisely infer labels as a whole. This global inference
quantitatively outperforms the baseline approaches in terms
of predictive validity, representation robustness, and affin-
ity effectiveness. We demonstrate that our algorithm can
robustly compute the semantic labels of a large scale trajec-
tory set (e.g., millions of trajectories) involving real-world
human interactions with object, scenes, and people.

1. Introduction
Now cameras are deeply integrated in our daily lives,

e.g., Amazon Cloud Cam and Nest Cam, reaching soon to-
wards 3D pixel continuum—every 3D point in our space is
observed by a network of ubiquitous cameras. Such cam-
eras open up a unique opportunity to quantitatively analyze
our detailed interactions with scenes, objects, and people
continuously, which will facilitate behavioral monitoring
for the elderly, human-robot collaboration, and social tele-
presence. A 3D trajectory representation of human inter-
actions [8, 19, 25, 41, 42] is a viable computational model
that measures microscopic actions at high spatial resolution
without prior scene assumptions. Unfortunately, the repre-
sentation is lacking semantics, i.e., it is important to know
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Figure 1. Given 3D dense reconstructed trajectories, we assign
their semantic meaning using multiple view image streams. Each
trajectory is associated with semantic labels such as body parts and
objects (basketball). For illustrative purpose, the last 10 frames of
trajectories are visualized.

not only where a 3D point is but also what it means and
how associated with other points. For instance, Figure 1 il-
lustrates semantic labeling of dense 3D trajectories that can
computationally describe the spatial and temporal relation-
ship between basketball player’s hand and ball.

However, assigning a semantic label to each trajectory
in real-world scenes involves with two principal challenges.
(1) Missing data: interactions with objects and people inher-
ently introduce self-occlusion, resulting in 3D reconstruc-
tion of highly fragmented trajectories, i.e., each trajectory
emerges and dissolves in different time instances where ex-
isting approaches of global spatial reasoning such as articu-
lated body [42] and shape basis [8, 41] are not applicable.
(2) Noisy and coarse recognition: existing visual recog-
nition systems were largely built on single view images,
which are often fragile to heavy background clutter, self-
occlusion, and non-iconic object pose. This issue further
escalates when coarse recognition models such as a bound-
ing box representation are used, i.e., not all pixels in a de-
tection window belong to the same object class.

In this paper, we present a method to precisely assign the
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semantic label on dense 3D trajectory stream reconstructed
by a large scale multi-camera system that emulates the 3D
pixel continuum. Our semantic labeling method leverages
two cues. (a) 2D visual cue: albeit noisy, it is possible to ge-
ometrically consolidate the outputs of 2D image recognition
across multiview images. We conjecture that among many
views, there exists a set of views that can confidently label
a 3D trajectory. We introduce a new representation called
3D semantic map—a probability distribution over seman-
tic labels per 3D trajectory constructed by a probability of
visibility and recognition confidence. (b) 3D spatial cue:
a set of trajectories that belong to the same objects can be
expressed by local rigid transformation. We use the local
rigid transformation to compute the trajectory affinity that
can link long-range fragmented trajectories.

Our system takes a set of synchronized multiview im-
age streams captured by 69 HD cameras1. Given 3D recon-
structed trajectories from image streams, we build the 3D
semantic map to find the view that best represents the se-
mantics of a 3D trajectory. We use the 3D semantic map
and trajectory affinity computed by local rigid transforma-
tion to precisely infer labels as a whole. This global in-
ference is conducted via multi-class graph-cuts in Markov
Random Field (MRF).

The core contributions of this paper include: (1) 3D se-
mantic map: we introduce a novel concept for trajectory
semantics encoding the distribution over labels computed
by view-pooling; (2) Long range affinity: estimation of lo-
cal rigid transformation around a trajectory allows relating
with distant trajectories; (3) Multiple view human interac-
tion dataset: we collect 9 new datasets involving in various
human interactions including pet/social interactions, dance,
sports, and object manipulations; (4) A modular design of
3D pixel continuum: we design a space that can densely
measure human interactions from nearly exhaustive views
by modularizing commodity parts, which is scalable and
customizable.

2. Related Work
Humans can effortlessly read the intent of others through

subtle behavioral cues in a fraction of second [4], and high
resolution videos are now able to capture such cues via our
interactions with surrounding environments. The pixels in
the videos can be tracked to form long term trajectories to
encode the interactions both in 2D and 3D.
2D trajectory As many objects are roughly rigid and move
independently, motion provides a strong discriminative cue
to group pixels and recognize occluding boundary, pre-
cisely. A core challenge of motion segmentation lies in frag-
mented nature of trajectories caused by tracking failure (oc-

1Our system reaches average 6.4 pixels/cm3, resulting in the most
dense 3D pixel continuum. cf) 0.44 pixels/cm3 for the Panoptic Studio
at CMU [18, 19]

clusion, drifting, and motion blur). Embedding trajectories
into low dimensional space has been used to robustly mea-
sure trajectory distance in the presence of missing data with-
out pre-trained models [9,13,16,30], and 2D trajectories can
be decomposed into 3D camera motion and deformable ob-
ject models [28, 35, 40]. Visual semantics learned by object
recognition frameworks provide stronger cues to cluster tra-
jectories [21, 22, 38].
3D trajectories Due to dimensional loss in the process of
2D projection, reconstructing 3D motion from a monocular
camera is an ill-posed problem in general, i.e., the num-
ber of variables (3D motion parameters) is greater than the
number equations (projections). However, when an ob-
ject undergoes constrained deformation such as face, its
3D shape can be recovered by enforcing spatial regular-
ity, e.g., shape basis [8, 34, 41, 42], template [33], and
mesh [39]. A key challenge of this approach is to learn a
shape prior that can express general deformation, often re-
quiring an instance specific pre-trained model, or inherent
rank minimization where the global solution is difficult to
be achieved [1, 10]. A trajectory based representation di-
rectly addresses this challenge. Motion is described by a
set of trajectory stream where generic temporal regularity
is applied through DCT trajectory basis [2, 27], polynomial
basis [5,20], and linear dynamical model [36]. A spatiotem-
poral constraint can further reduce dimensionality, resulting
in robust 3D reconstruction [3,26,40]. When multiple view
images are used, it is possible to represent general motion
with topological change without any spatial and temporal
prior [18, 19].

Unlike 2D trajectories, semantic labeling of 3D trajec-
tories is largely uncharted research area. Notably, Yan and
Pollefeys [42] presented a trajectory clustering algorithm
based on articulated body structure, i.e., an object is com-
posed of a kinematic chain of rigid bodies where the artic-
ulated joint and its rotational axis lie in the intersection of
two shape subspaces. Later, image segmentation cues have
been incorporated to recognize a scene topology, i.e., pre-
clustering object instances, to reconstruct dynamics scenes
from videos in the wild [11,15,32]. Note that none of these
work has addressed semantics. The work by Joo et al. [18]
is closest to our approach where the trajectory clustering is
based on 3D rigid transformation of human anatomical key-
points. Our method is not limited to human bodies, which
enables modeling general human interactions with scenes,
objects, and other people.

3. System Overview
Our system takes 69 synchronized image streams at 30

Hz from a multi-camera system (Section 7). We use the
standard structure from motion pipeline [17,37] to calibrate
the camera and reconstruct trajectory stream in 3D as de-
scribed in Section 6. These 3D reconstructed trajectories
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Figure 2. (a) A 3D point Xt at the t time instant is observed by multiple cameras {Pc}c∈C where the point is fully visible to the cth camera
if V (Xt, c) = 1, and zero otherwise. We denote the 2D projection of the 3D point onto the camera as P (Xt, c). (b) For each image Ic,
we use the recognition confidence (body segmentation [23]/object bounding box [29]) to build L2D(x|Ic) at each pixel x where the ith

element of L2D is the likelihood (confidence) of the recognition for the ith object class as shown on the right. For the illustration purpose,
we only visualize the likelihood of body segments overlaid with the image while L2D also includes object classes. (c) We construct the
3D semantic map L3D(X ) via pooling L2D over multiple views (view-pooling) by reasoning about visibility. The magenta camera is the
visible camera set, and the bar graphs represent L2D . The figures are best seen in color.

are used to reason about their semantic labels by consoli-
dating 2D recognition confidence in multiple view images:
3D semantic map is constructed using view-pooling (Sec-
tion 5.1), and affinity between long range fragmented trajec-
tories is measured by computing local rigid transformation
(Section 5.2).

4. Notation

We represent a fragmented trajectory with a time series
of 3D points: X = {Xt ∈ R3}Td

t=Te
where Xt is the 3D

point in the trajectory at the t time instant, and Te and Td
are emerging and dissolving moments of the trajectory, re-
spectively.

The 3D point Xt is projected onto the visible cth cam-
era projection matrix, Pc = KcRc

[
I3 −Cc

]
∈ R3×4

to form the 2D projection, P (Xt, c) ∈ R2 where Kc is
the intrinsic parameter of the camera encoding focal length
and principal points, and Rc ∈ SO(3) and Cc ∈ R3 are
the extrinsic parameters (rotation and camera center), i.e.,

P (Xt, c) =
[
P1

cX̃t/P
3
cX̃t P2

cX̃t/P
3
cX̃t

]T
where X̃

is the homogeneous representation of X, and Pi
c indicates

the ith row of Pc. We assume the camera extrinsic and
intrinsic parameters are pre-calibrated and constant across
time (no time index).

A probability of point visibility at cth camera is repre-
sented as V (Xt, c) ∈ [0, 1] as shown in Figure 2(a). The
cth camera produces the image at the t time instant Ict . Each
pixel x is associated with the confidence of semantic labels,
i.e., L2D

(
x ∈ R2|Ic

)
∈ [0, 1]N where N is the number of

object classes2. For instance, L2D can be approximated by
the last layers of a convolutional neural network as shown
in Figure 2(b). Our framework can build on general 2D

2The object classes include objects, body parts, and independent in-
stances.

recognition framework that can produce a confidence map
while in this paper, we focus on two main pre-trained mod-
els: body semantic segmentation [23] and bounding box
object recognition [29] trained with COCO [24] and Ima-
geNet [31] datasets.

5. Semantic Trajectory Labeling

Given 3D reconstructed trajectories, we present a
method to precisely infer their semantic labels. A funda-
mental challenge lies in the fragmented and noisy nature of
the 3D reconstruction and image semantic labeling. A key
innovation is the 3D semantic map that can encode the vi-
sual semantics of a 3D trajectory by consolidating the 2D
recognition confidence across multiple view image streams.
We integrate the 3D semantic map in conjunction with long
term trajectory affinity into a graph-cut formulation to infer
the semantic labels jointly.

5.1. 3D Semantic Map

We define the 3D semantic map, L3D ∈ [0, 1]N , a prob-
ability distribution over semantic labels per 3D based on a
probability of visibility and 2D recognition confidence mea-
sured at the 2D projections of the trajectory onto all multiple
view images:

L3D (X ) =
1

∆T

Td∑
t=Te

Pool
c∈C

(L2D (P (Xt, c) |Ic)) , (1)

where ∆T = Td−Te is the life span of the trajectory, c ∈ C
is the camera index, and C is the camera index set, i.e., |C| is
the number of cameras. The 3D trajectory label is evaluated
at the 2D projection P (Xt, c) across all cameras over the
trajectory life span.

To alleviate noisy and coarse 2D recognition results, we



introduce a view-pooling operation:

Lc∗ = Pool
c∈C

(Lc) s.t. c∗ = argmin
c∈C

C∑
j=1

Vc‖Lc − Lj‖2,

where we denote L2D (P (Xt, c) |Ic) as Lc, and V (Xt, c)
as Vc by an abuse of notation. The view-pooling operation
finds the best view among the visible cameras that is con-
sistent with other view predictions (the weighted median of
{Lc}c∈C).

The view-pooling operation is based on our conjecture
that among many views, there exist a few views that can
confidently predict an object label. It is robust to noisy
recognition outputs as shown in Figure 2(b) where many
false positive bounding boxes are detected. The visibility
based confidence measure can suppress inconsistent detec-
tion across views, and weighted median pooling can prevent
from a view biased L3D. This allows the pooled L2D tem-
porally consistent, which makes averaging over time mean-
ingful.

Figure 2(c) illustrates the view-pooling operation over
all multiview image streams. A set of Lc (bar graphs) at
the projected locations {P (X, c)}c∈C are used for the view-
pooling that finds the Lc∗ that best represents the distribu-
tion of Lc. For an illustrative purpose, we highlight the
cameras that have high visibility with magenta color, i.e.,
V (X, c) > εe.

5.2. 3D Trajectory Affinity

An object that undergoes locally rigid motion provides a
spatial cue to identify the affinity between fragmented tra-
jectories. Consider two trajectories Xi and Xj that have
overlapping lifetime, ∅ 6= S = [T i

e , T
i
d]∩ [T j

e , T
j
d ] where the

superscript in Te and Td indicates the index of the trajectory.
We measure the affinity of the trajectories as follow:

A(i, j) = exp

(
−
(
‖eji‖/τ

)2)
(2)

where A ∈ RM×M is an affinity matrix whose (i, j) entry
measures the reconstruction error:

eji = max
t−1,t∈S

∥∥∥Xj
t −Ri

tX
j
t−1 − tit

∥∥∥ .
eji is the Euclidean distance between Xj

t and the predicted
point by its emerging location Xj

Te
via its local transfor-

mation (Ri
t, t

i
t) ∈ SE(3) (rotation and translation) learned

by the ith trajectory Xi. This measure can be applied to
long range trajectories, which establish a strong connection
across an object, e.g., left hand to left elbow trajectories.
i, j ∈ T = {1, · · · ,M} where M is the number of tra-
jectories. Unlike difference of pairwise point distance mea-
sure that has been used for trajectory clustering [18], our

affinity takes into account general Euclidean transformation
(SE(3)) that directly measures rigidity.

We learn the local transformation (Ri
t, t

i
t) of the ith tra-

jectory at each time instant, given a set of neighbors:

Ri
t = ∆XNi

t

(
∆XNi

t−1

)−1
, tit = Ri

tX
i
t−1 −Xi

t (3)

where ∆XNi
t is a matrix whose columns are made of rel-

ative displacement vectors of neighboring trajectories with
respect to Xi, i.e., ∆Xj

t = Xj
t − Xi

t where j ∈ Ni is the
index of neighboring trajectories. The set of neighbors are
chosen as

Ni =

{
j

∣∣∣∣max
t∈S

∥∥∥Xj
t −Xi

t

∥∥∥ < ε

}
,

where ε is the radius of a 3D Euclidean ball. Note that not
all ε-neighbors belong to the same object which requires to
evaluate the trajectory with Equation (2).

In practice, evaluating Equation (2) for all trajectories
are computationally prohibitive. For example, it requires
1010 evaluations are needed for 100,000 trajectories3 to fill
in all entries in the affinity matrix A. Since it is unlikely
that far distance trajectories belong to the same object class,
we restrict the evaluations only for εa-neighbors (N a

i ) that
are sufficient to cover a large portion of objects and greater
ε, e.g., εa = 30cm and ε = 5cm. Further, we randomly
drop-out connections between neighboring trajectories for
computational efficiency. This also increases the robust-
ness of trajectory affinity that is often biased by the density
of trajectories. When computing the local transformation
in Equation (3), we embed RANSAC [14]: choosing ran-
dom three trajectories from ε-neighbors and finding the lo-
cal transformation that produces the maximum number of
inliers.

5.3. Trajectory Label Inference

Inspired by multi-class pixel labeling using α-
expansion [7], we infer the trajectory labels U : T → L
where L = {1, · · · , N} is the index set of object classes,
by minimizing the following cost:

C(U) =
∑
i∈T

φ(li, U(i)) + λ
∑
i∈T

∑
j∈Na

i

ψ(U(i), U(j)) (4)

where λ is a hyper-parameter that control the weight be-
tween data φ and smoothness ψ costs.

The data cost can be written as:

φ(li, U(i)) =

{
0 if li = U(i)
L3D (Xi)li if li 6= U(i)

,

where it penalizes the discrepancy between the 3D semantic
map predicted by a series of 2D recognitions and assigned

3In our experiments, the number of trajectories is order of 104 ∼ 106.
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Figure 3. (a) We build a multi-camera system composed of 69 cameras running at 30 Hz. (b) The multi-camera system creates the 3D pixel
continuum where all 3D points in the enclosed space are measured by multiple images. We visualize the pixel density using maximum
intensity projection seen from top view. At the center of the stage, more than 60 pixels can measure a unit cm3 cubic. (c) The system
architecture is designed using modular units, which makes the system highly scalable.

label. L3D (Xi)li is the lthi entry of L3D that measures the
likelihood of Xi being class li.

The smoothness cost can be described by the trajectory
affinity:

ψ(U(i), U(j)) =

{
0 if U(i) = U(j)
A(i, j) if U(i) 6= U(j)

,

where it penalizes the label difference between trajectories
that undergo the same local rigid transformation. li is the
label index computed from L3D:

li = argmax
l∈L

L3D (Xi|{Pc, Ic}c∈C) .

Due to multi-class labeling, minimization of Equation (4) is
highly nonlinear while the iterative α-expansion algorithm
has been shown a strong convergence towards the global
minimum [7, 12].

6. 3D Trajectory Reconstruction
We reconstruct 3D trajectory stream by leveraging the

era system described in Section 7. In this section, we de-
scribe the procedure of the 3D trajectory reconstruction al-
gorithm modified from Joo et al. [19] to produce denser
and more accurate trajectories. (1) Camera calibration
We calibrate the intrinsic parameter of each camera (focal
length, principal points, and radial lens distortion), inde-
pendently, and use standard structure from motion to cal-
ibrate extrinsic parameters (relative rotation and transla-
tion). In the bundle adjustment, the extrinsic and intrin-
sic parameters are jointly refined. To accelerate further
image based matching, we learn the image connectivity
graph [37] Gm = (Vm, Em) through exhaustive pairwise
image matching, e.g., two cameras that have more than 90
degree apart are unlikely to match to each other. (2) Point
cloud triangulation At each time instant, we find dense
feature correspondences using grid-based motion statistics
(GMS) [6] among Gm and triangulate each 3D point X with
RANSAC. The initial visibility for the cth camera is set to
V (X, c) = exp(− (‖P (X, c)− x(c)‖/σ)

2
) where the σ is

the tolerance of the reprojection error and x(c) is the cor-
erspondecne point at camera c. (3) 3D point tracking The
triangulated points are used for build trajectory stream. For
each point Xt at the t time instant, we project the point onto
the visible set of cameras, i.e., P (Xt, c ∈ V) where V =
{j|V (Xt−1, c) > εs}where εs is the threshold for the prob-
ability of visibility. These projected points are tracked in 2D
using optical flow and triangulated with RANSAC to form
Xt+1. Similar to the visibility initialization, the probability
of visibility V (Xt+1, c) is updated using reprojection error.
We iterate this process (tracking→triangulation→visibility
update) until the average reprojection is higher than 2 pixels
or the number of visible cameras |V| is less than 2.

7. 3D Pixel Continuum Design
To demonstrate the 3D pixel continuum where every 3D

point is observed by multiple cameras, we build a large
scale multi-camera system composed of 69 cameras as
shown in Figure 3(a). Two rows of the cameras enclose
cylindrical space (3m diameter × 2.5m height) that facili-
tates capturing diverse human interactions. A camera pro-
duces a HD resolution image (1280×1024) where the max-
imum pixel density per unit cm3 reaches to more than 60
pixels. It runs at 30 Hz precisely triggered by a master cam-
era node: the master camera sends PWM signal through
General Purpose Input/Output (GPIO) port when its shutter
opens, which triggers the rest 68 slave cameras, achieving
sub-nano second accuracy. To alleviate the trigger signal at-
tenuation due to a number of camera connections, we design
a signal amplifier that can feed the targeted electric current.

All cameras produce a sheer amount of visual data at
each second (280 GB/s), which introduces severe data traf-
fic in the global computing node. Instead, we modular-
ize the image processing using a single board computer
(SBC): the image data stream from each camera is trans-
ferred through USB 3.0 to its own SBC that is dedicated
to JPEG image compression, resulting in ∼ 400 KB/image
with minimal loss of image quality. This compressed data
is transferred to two global computing nodes through multi-



ples of 10 Gb Ethernet network switches. The global com-
puting nodes write the data into designated PCIe interfaced
solid state drives (SSD). The architecture is summarized in
Figure 3(c).

The key features of the system design is scalability and
cost effectiveness. The modularized system design allows
increasing the number of cameras and size of the sys-
tem without introducing system complexity: the module of
camera-SBC-Network switch can be augmented in the ex-
isting system. Also the hardware frame is build on modular
T-slotted aluminum frame where the modification of geo-
metric camera placement can be easily customizable. All
parts including hardware, electronic devices, and cameras
are commodity items where no system specific design is
needed.

8. Results
To validate our semantic trajectory reconstruction algo-

rithm, we evaluate on real-world datasets collected by the
3D pixel continuum described in Section 7.

8.1. Human Interaction Dataset

9 new vignettes that include diverse human interactions
are captured: Pet interaction: A dog owner naturally in-
teracts with her dog: ask him to sit, turn around and jump.
The dog also plays with his doll and seek snack while walk-
ing around with the owner. This pet interaction demon-
strates strength of our system, i.e., reconstructing fine de-
tailed interactions, not limited to humans [18]; Interna-
tional Latin ballroom dance: Two sport dancers practice
for Cha-cha style dance competition where the physical in-
teractions between them are highly stylized. The dancers
wear textureless black suit and skirt where semantic label-
ing is likely noisy; K-Pop group dance: Two experienced
K-Pop dancers perform the group break dance. The dances
are designed to be synchronized, jerky, and fast; Object
manipulation: Two students manipulate various objects
such as doll, flowerpot, monitor, umbrella, and hair drier in
a cluttered environments. This vignette demonstrates that
the system is able to handle multiple objects; Bicycle rid-
ing: A person rides a bicycle that induces large displace-
ment. This interaction introduces significant occlusion, i.e.,
the person is a part of the bicycle; Tennis swing: A person
practices fore- and back-hand strokes with a tennis racket.
The tennis racket is often difficult to detect as the racket
head is mostly transparent; Basketball I: A student player
practices dribbling which includes fast ball motion; Bas-
ketball II: An other player tries to block the opponent’s
motion that includes severe occlusion between players. We
make these data including images, calibration, 3D trajecto-
ries, and their semantic labels, publicly available through
the following website: http://www-users.cs.umn.
edu/˜jsyoon/Semantic_trajectory/

8.2. Quantitative Evaluation

We quantitatively evaluate our representation and algo-
rithm in terms of three criteria: (1) robustness of 3D se-
mantic map (view-pooling); (2) effectiveness of the affin-
ity measure; and (3) predictive validity of semantic labels
where all datasets are used for the evaluations. Note that as
no ground truth data or benchmark dataset is available, we
conduct ablation studies to validate our methods.
Robustness of 3D semantic map We introduce the view-
pooling operation that takes the weighted median of recog-
nition confidence based on visibility. This operation allows
robustly predicting the 3D semantic map L3D as it is not
sensitive to erroneous detection. To evaluate its robustness,
we measure the temporal consistency of the view-pooling
operation along a trajectory. Ideally, the view-pooled recog-
nition confidence should remain constant across time as it
belongs to the trajectory of the same object. We compare
the view-pooling with average-pooling across randomly all
cameras using normalized correlation measure across time,
i.e., NC(L0

vp, L
t
vp) where Lt

vp is the view-pooled recogni-
tion confidence at the t time instant. We summarize the
results on all sequences in Table 1. Our method shows
a graceful degradation as time progress up to 15 seconds
while the average-pooling is highly biased by noisy recog-
nition, which produces drastic performance gradation (no
temporal coherence).

Time (second) 1s 3s 5s 7s
View pool 0.96±0.01 0.90±0.02 0.89±0.03 0.88±0.02
Ave. pool 0.43±0.10 0.44±0.10 0.43±0.10 0.48±0.09
Time (second) 9s 11s 13s 15s
View pool 0.89±0.02 0.88±0.03 0.87±0.05 0.79±0.08
Ave. pool 0.44±0.09 0.43±0.10 0.42±0.10 0.37±0.10

Table 1. Time consistency of 3D semantic map

Effectiveness of affinity measure We compute the affinity
based on local transformation per trajectory. This method
is highly effective to relate with long term fragmented tra-
jectories. We compare the validity of our affinity measure
with that of εs-neighbors (Ns), i.e., the distance between
trajectories over time remains less than εs. To evaluate,
two neighboring trajectories for both methods are randomly
chosen and projected onto cameras. Concretely, we mea-
sure

∑
j∈Ns

E(i, j) where

E(i, j) =

{
0 if L(P (Xi

t, c)|Ic) = L(P (Xj
t , c)|Ic)

1 otherwise
.

L : R2 → L outputs the semantic label index given the
2D projection. If the measure is small, it indicates that the
neighbors are correctly identified. Figure 4 illustrates the
comparison over 6 different sequences. Each one has differ-
ent global and local motion. If the motion is largely global,
the affinity measure can confuse as multibody motion is
identified as a rigid body motion as shown in Basketball

http://www-users.cs.umn.edu/~jsyoon/Semantic_trajectory/
http://www-users.cs.umn.edu/~jsyoon/Semantic_trajectory/
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Figure 4. We evaluate the effectiveness of our affinity map computed by estimating local Euclidean transformation SE(3). While the
effectiveness of εs-neighbors diminishes rapidly after 10 cm, our method still holds for longer range, e.g., 1 m.

(a) Pet int. (b) L. dance (c) K-Pop (d) Tennis (e) Basketball I (f) Basketball II

Figure 5. We evaluate semantic label prediction via an ablation study: to use a subset of cameras to assign the semantic labels to the
trajectories and validate the labels by comparing the labels of projections with the held-out images. Our view-pooling method outperforms
the average-pooling with large margin for all sequences.

II. Nonetheless, our method outperforms the εs-neighbors
for all sequences. In particular, it shows much stronger per-
formance at long range trajectories (0.6-1 m), which makes
the large scale label inference possible.

Predictive validity of 3D semantic label We evaluate the
semantic label inference via cross validation scheme. We
label a 3D trajectory with a subset of cameras and project
onto the held-out camera to evaluate the predictive validity.
Ideally, the trajectory label should be consistent with any
view as visibility is considered, and therefore, the projected
label must agree with the recognition result. As we infer
the semantic labels of the trajectories jointly by consolidat-
ing multiple view recognition, the number of cameras plays
a key role in the inference. We test the predictive valid-
ity by changing the number of cameras to label trajectories
as shown in Figure 5. When the number of cameras is few,
e.g., 1-5, our method using view-pooling performs similarly
with average-pooling. However, the performance quickly is
boosted as the number of camera increases, i.e., in most
cases, it produces more than 0.6 accuracy at 20 cameras for
inference. In Table 2, we further compare our method with
the approach from Joo et al. [18], where the semantic label
on the trajectory is inferred by 3D human body anatomical
key-points. As highlighted in Figure 6, our method outper-
forms [18] in all possible scenarios (e.g. occlusion, dynamic
deformation, object interaction, multiple people).

R.motion B.ball I Latin K-Pop Pet Bike Tennis
Joo et al. [18] 0.8547 0.8862 0.7532 0.5019 0.4819 0.5307 0.7317

AP(1) 0.7532 0.6271 0.5388 0.3730 0.5145 0.5297 0.4607
AP(30) 0.8578 0.6879 0.5014 0.3431 0.6276 0.6341 0.6029
AP(69) 0.8584 0.7309 0.7769 0.5706 0.6018 0.6162 0.6691
VP(1) 0.8403 0.7259 0.7307 0.4485 0.5755 0.7432 0.6099

VP(30) 0.9092 0.8650 0.7753 0.5992 0.8015 0.7064 0.7133
VP(69) [Ours] 0.9326 0.9572 0.8753 0.6985 0.8132 0.8394 0.8438

Table 2. We compare our method with multiple baselines in terms
of accuracy. AP(x) and VP(x) refer to average-pooling and view-
pooling, respectively where x is the maximum number of visible
cameras.
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Figure 6. Our method outperforms all baselines. The notation,
AP(x) and VP(x) are consistent with in Table 2

8.3. Qualitative Evaluation

We apply our method to reconstruct dense semantic tra-
jectories in 3D as shown in Figure 1, 7, 8, and 9. The colors
of the trajectories are associated with the semantic labels.
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Figure 7. Qualitative evaluation. Best seen in color. For an illustrative purpose, the last 30 frames of the trajectories are visualized.
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Figure 8. Pet interaction

9. Discussion

We present an algorithm to reconstruct semantic trajec-
tories in 3D using a large scale multi-camera system. This
problem is challenging because of fragmented trajectories
and noisy/coarse recognition in 2D. We introduce a new
representation to encode the visual semantics to each trajec-
tory called 3D semantic map that allows us to consolidate
multiple view noisy recognition results by leveraging view
pooling based on their visibility and recognition confidence.
3D spatial relationship between fragmented trajectories is
modeled by local rigid transformation that can establish the
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Figure 9. Range of motion

connection between long range trajectories. These two cues
are integrated into a graph-cut formulation to infer precise
labeling of the trajectories. Note that Our framework is not
specific to the choice of the 2D recognition models.

The first wave of the optic technology enabled cameras
to be emerged and embedded in our space. The second
wave will be connectedness: multiple cameras will measure
our interactions and cooperatively understand their seman-
tic meaning. This paper takes the first bold step towards
establishing a computational basis for understanding 3D se-
mantics at fine scale.
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